

Schottky Mount glass Passivatd Bridge Rectifier

Features

- Glass Passivated Die Construction
- Low Forward Voltage Drop
- High Current Capability
- High Surge Current Capability
- Designed for Surface Mount Application
- Plastic Material UL Flammability 94V-O

• Case:MBS, Molded Plastic

 Terminals: Plated Leads Solderable per MIL-STD-202, Method 208

Polarity: As Marked on CaseMounting Position: Any

Marking:Type Number

• Lead Free: For RoHS / Lead Free Version

Major Ratings and Characteristics

Io	0.5A, 0.8A
V_{RRM}	100 V to 1000 V
I _{FSM}	30 A
I _R	5 μΑ
V _F	1.00V
T _j max.	150 °C

Maximum Ratings & Thermal Characteristics (TA = 25 °C unless otherwise noted)

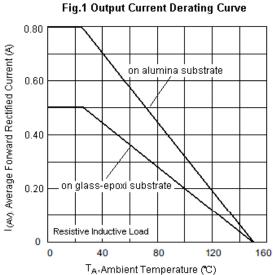
Single Phase, half wave, 60Hz, resistive or inductive load.

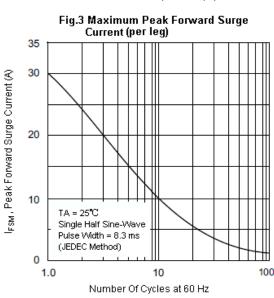
For capacitive load, derate current by 20%.

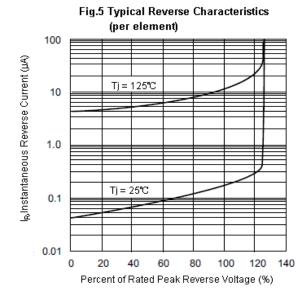
Items	Symbol	MB 1S	MB 2S	MB 4S	MB 6S	MB 8S	MB 10S	UNIT
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	100	200	400	600	800	1000	V
RMS Reverse Voltage	$V_{R(RMS)}$	70	140	280	420	560	700	V
Average Rectified Output Current (1) Average Rectified Output Current (2)	I _O	0.5 0.8						А
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave superimposed on rated load (JEDEC Method)	I _{FSM}	30						А
I ² t Rating for Fusing (t < 8.3ms)	l ² t	3.7					A ² s	
Thermal resistance from junction to lead	$R_{\theta JL}$	20					°C/W	
Thermal resistance from junction to ambient ⁽¹⁾	$R_{\theta JA}$	134						°C/W
Thermal resistance from junction to ambient ⁽²⁾	76							
Operating junction and storage temperature range	T_J, T_{STG}	–55 to +150					$^{\circ}$ C	

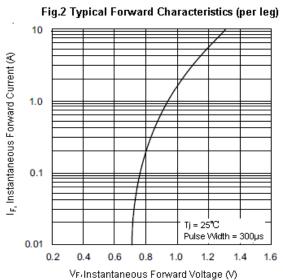
Note 1: Mounted on glass epoxy PC board with 1.0mm² solder pad.

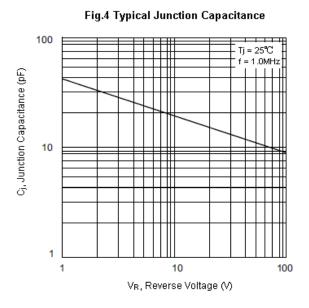
Note 2: Mounted on aluminum substrate PC board with 1.0mm² solder pad.

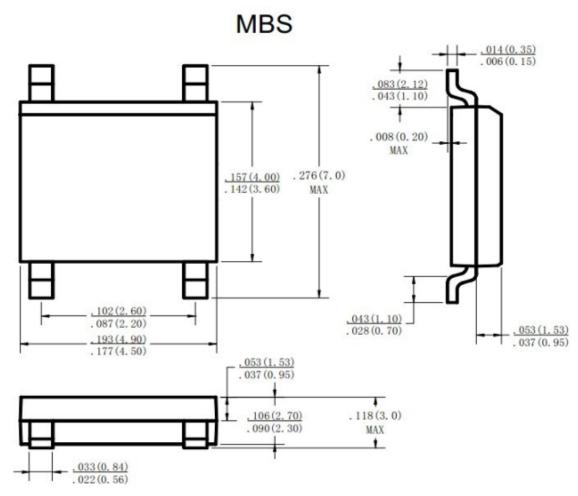

Electrical Characteristics (T_A = 25 °C unless otherwise noted)


Items	Test conditions		Symbol	Min	Туре	Max	UNIT
Instantaneous forward voltage	I _F =0.4A ⁽³⁾		V_{F}	-	-	1.00	V
Reverse current	V _R =V _{DC}	T _j =25℃	I _R	-	-	5	^
		T _j =125℃		-	-	500	μA
Typical junction capacitance	4.0 V ,1MHz		CJ	-	13	-	рF


Note: 3.Pulse test:300µs pulse width,1% duty cycle.




Characteristic Curves (T_A=25 ℃ unless otherwise noted)



Package Outline

Dimensions in inches and (millimeters)

Shanghai Leiditech Electronic Co.,Ltd

Email: sale1@leiditech.com Tel: +86- 021 50828806 Fax: +86- 021 50477059

Rev: 01.06.2015 3/3 www.leiditech.com