FEATURES

- Ranges 0...±200 sccm¹
 or 0...±2 "H₂O (0...±5 mbar)
- · Bidirectional sensing
- Actual mass flow sensing
- Low differential pressure sensing

To be used with dry gases only

The AWM series is NOT designed for liquid flow and will be damaged by liquid flow through the sensor

SPECIFICATIONS

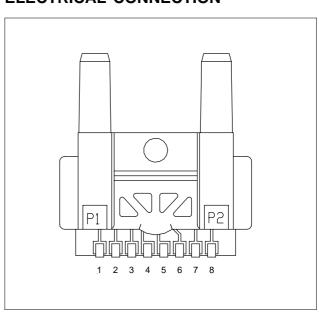
Maximum ratings

Supply voltage² 8 to 15 V

typ. 10 ±0.01 V

Power consumption 50 mW

Temperature limits


Operating -25 to 85°C Storage -40 to 90°C

Mechanical shock 100 g (5 drops, 6 axes)

Note:

- ¹ sccm denotes standard cubic centimeters per minute
- ² Output voltage is ratiometric to supply voltage

ELECTRICAL CONNECTION

December 2007 / 592 1/6

Mass flow sensor for gases

FLOW SENSOR CHARACTERISTICS3

 $V_S = 10 \pm 0.01 \text{ V}, T_A = 25^{\circ}\text{C}$

Part no.	Flow range (full scale)	Pressure range	Max. flow change⁴	Output voltage @ trim point
AWM92100V	±200 sccm		5.0 l/sec	77 mV @ 200 sccm
AWM92200V		±2 "H ₂ O	5.0 l/sec	38 mV @ 2 "H ₂ O

PERFORMANCE CHARACTERISTICS

 $V_s = 10 \pm 0.01 \text{ V}, T_{\Delta} = 25^{\circ}\text{C}$

Characteristics			Min.	Тур.	Max.	Unit	
Zero offset			-15	0	15	mV	
Repeatability and hysteresis (combined) AWM92100V					±0.35	%FSO	
		AWM92200V		±0.1		0/ 22 2 2 2 2 2	
Ratiometricity error ²				±0.30		% reading	
Temperature effects ⁵	Offset	-25 to 85 °C6			±2.0 ⁷		mV
	Span	-25 to 25 °C	AWM92100V		-3.08		%FSO
			AWM92200V		25 ⁵		% reading
		25 to 85 °C	AWM92100V		±1.08		%FSO
			AWM92200V		-30 ⁵		% reading
Sensor resistance (pin 1 - pin 2, pin 1 - pin 8)			1.5	1.75	2.2	kOhm	
Sensor current					0.6	mA	
Response time				1.0	3.0	ms	
Common mode pressure					25	psi	

Notes:

2/6

December 2007 / 592

²Output voltage is ratiometric to supply voltage

³ A 5 micron filter is recommended for all devices.

⁴ Maximum allowable rate of flow change to prevent damage.

⁵ Temperature shifts in differential pressure devices are mostly due to the density change of the gas over temperature.

⁶ Shift is relative to 25 °C.

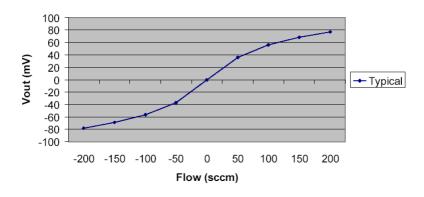
⁷ Assumes low TCR bridge resistance used (pins 2 and 8).

⁸ Requires recommended Rc value of 1K Ohm is used (pins 3 to 7) and typ. heater control circuit. Maximum current Rh.

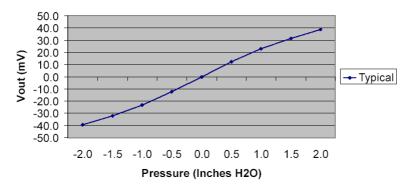
OUTPUT FLOW VS INTERCHANGEABILITY

 $V_S = 10 \pm 0.01 \text{ V}, T_A = 25^{\circ}\text{C}$

AWM92100V FLOW SPECIFICATIONS


Flow (sccm)	Nominal (mV Typical)	± Tolerance (mV Typical)
200	77	32
150	68	29
100	56	25
50	36	17
0	0	20
-50	-37	18
-100	-57	26
-150	-69	30
-200	-78	33

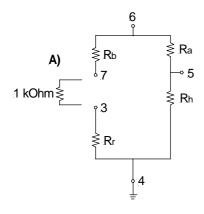
AWM92200V FLOW SPECIFICATIONS


Pressure (inch H2O)	Nominal (mV) Typical	Typical Min. (mV)	Typical Max. (mV)
2.0	38	22	77
1.5	32	18	66
1.0	23	12	49
.5	12	7	29
0	0	-20	20
5	-12	-7	-30
-1.0	-23	-12	-51
-1.5	-32	-18	-68
-2.0	-39	-22	-79

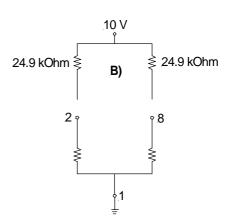
OUTPUT CURVES

AWM92100V Output vs. Flow

AWM92200V Output vs. Pressure



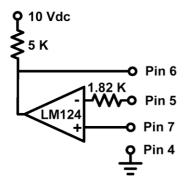
December 2007 / 592 3/6



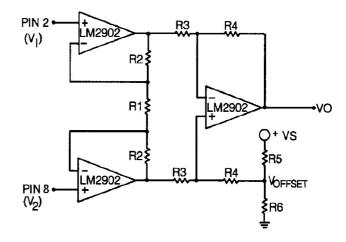
Mass flow sensor for gases

HEATER CONTROL CIRCUIT

SENSING BRIDGE SUPPLY CIRCUIT



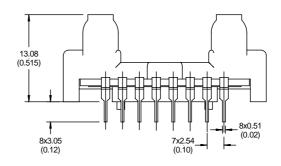
Note:

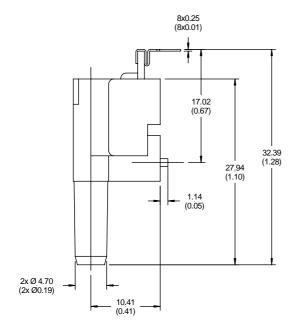

Circuits required for operation per specifications. Circuits are not on board the sensor.

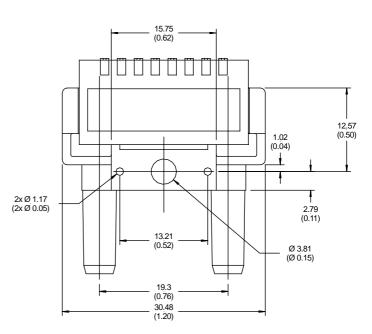
- A) Customer supplied 1 kOhm resistor (affects temperature compensation and span voltage).
- B) Customer supplied 24.9 kOhm matched bridge resistors (affects null output voltage). Output is measured differentially from pins 8 to 2.

HEATER CONTROL CIRCUIT (suggested)

DIFFERENTIAL INSTRUMENTATION AMPLIFIER CIRCUIT (OPTIONAL)




$$V_{O} = \left(\frac{2R_{2} + R_{1}}{R_{1}}\right) \left(\frac{R_{4}}{R_{3}}\right) (V_{2} - V_{1}) + V_{Offset}$$


where
$$V_{Offset} = V_S \left(\frac{R_6}{R_6 + R_5} \right)$$

4/6 December 2007 / 592

OUTLINE DRAWING

mass: approx. 5.6 g dimensions in mm (inches)

December 2007 / 592 5/6

GAS CORRECTION FACTORS

Mass flow sensor for gases

Gas type	Correction factor (approx.)
Helium (He)	0.510
Hydrogen (H ₂)	$0.7^{10,11}$
Argon (Ar)	0.95
Nitrogen (N ₂)	1.0
Oxygen (O ₂)	1.0
Air	1.0
Nitric oxide (NO)	1.0
Carbon monoxide (CO)	1.0
Methane (CH ₄)	1.1
Ammonia (NH ₃)	1.1
Nitrous oxide (N ₂ O)	1.35
Nitrogen dioxide (NO ₂)	1.35
Carbon dioxide (CO ₂)	1.35

Notes:

ORDERING INFORMATION

Flow range	Dry gas
±200 sccm	AWM92100V

Pressure range	Dry gas
±2 "H ₂ O (±5 mbar)	AWM92200V

Sensortechnics reserves the right to make changes to any products herein. Sensortechnics does not assume any liability arising out of the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

6/6 December 2007 / 592

⁹ Gas correction factors are referenced to nitrogen (N₂) as calibration gas type. Approximate gas correction factors are provided as guidelines only. Individual gas types may perform differently at temperature extremes and varying flow rates.

¹⁰ When sensing Hydrogen (H₂) or Helium (He) it may be necessary to power the mass flow sensor using increased supply voltage: Hydrogen typ. 12 V, Helium typ. 15 V

¹¹ Hydrogen (H₂) flow measurement requires the use of a special sensor. These devices provide normal operation when sensing hydrogen flow and are designated with an "H" at the end of the order number.