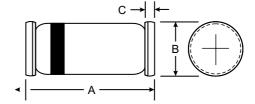


LL101A-LL101C

SMALL SIGNAL SCHOTTKY BARRIER DIODES

Features

- For general purpose applications
- The LL101 series is a metal-on-silicon Schottky barrier device which is protected by a PN junction guard ring.
- The low forward voltage drop and fast switching make it ideal for protection of MOS devices, steering, biasing and coupling diodes for fast switching and low logic level applications.
- Integrated protection ring against static discharge
- Low capacitance
- Low leakage current
- This diode is also available in the DO35 case with type designation SD101A, B, C and in the SOD123 case with type designation SD101AW, SD101BW, SD101CW.
- Lead (Pb)-free component
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC


Case: MiniMELF Glass case (SOD80)

Weight: approx. 31 mg

Cathode Band Color:Black

SOD-80					
Dim Min Max					
Α	3.30	3.70			
В	1.30	1.60			
С	0.28	0.50			
All Dimensions in mm					

Maximum Ratings and Electrical Characteristics @ T_A = 25°C unless otherwise specified

Parameter	Test condition	Part	Symbol	Value	Unit
Peak inverse voltage		LL101A	V _{RRM}	60	V
		LL101B	V _{RRM}	50	V
		LL101C	V _{RRM}	40	V
Power dissipation (infinite heatsink)			P _{tot}	400 ¹⁾	mW
Forward continuous current			I _F	30	mA
Maximum single cycle surge 10 µs square wave			I _{FSM}	2	A

¹⁾ Valid provided that electrodes are kept at ambient temperature

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Reverse Breakdown Voltage	I _R = 10 μA	LL101A	V _{(BR)R}	60			V
		LL101B	V _{(BR)R}	50			V
		LL101C	V _{(BR)R}	40			V
Leakage current	V _R = 50 V	LL101A	I _R			200	nA
	V _R = 50V	LL101B	I _R			200	nA
	V _R = 50 V	LL101C	I _R			200	nA
Forward voltage drop	I _F = 1 mA	LL101A	V_{F}			410	mV
	I _F = 1mA	LL101B	V_{F}			400	mV
	I _F = 1 mA	LL101C	V _F			390	mV
	I _F = 15 mA	LL101A	V_{F}			1000	mV
		LL101B	V_{F}			950	mV
		LL101C	V _F			900	mV
Diode capacitance	V _R = 0 V, f = 1 MHz	LL101A	C _D			2.0	pF
	V _R = 0 V, f = 1 MHz	LL101B	C _D			2.1	pF
		LL101C	C _D			2.2	pF
Reverse recovery time	$I_F = I_R = 5 \text{ mA},$ recover to 0.1 I_R		t _{rr}			1	ns

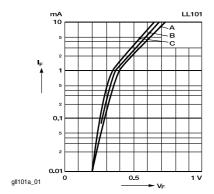


Figure 1. Typ. I_F vs. V_F for primary conduction through the Schottky barrier

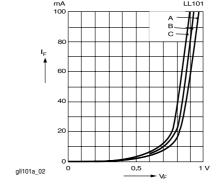


Figure 2. Typ. $\rm I_F$ of combination Schottky barrrier and PN junction guard ring

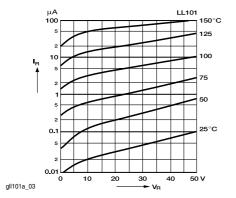


Figure 3. Typical Variation of Reverse Current at Various Temperatures

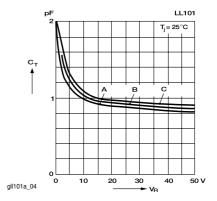


Figure 4. Typical Capacitance Curve as a Function of Reverse Voltage